有理数是什么?
01、有理数为正整数、负整数、正分数、负分数以及零的统称。数学上,可以表达为两个整数比的数被定义为有理数。
有理数是什么
有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
词源
有理数在希腊文中原意是“成比例的数”,英文取其意,以ratio为字根,在字尾加上-nal构成形容词,全名为rational number,直译成汉语即是“可比数”。对应地,无理数则为“不可比数”。
明末数学家徐光启和学者利玛窦翻译《几何原本》前6卷时的底本是拉丁文。他们将这个词译为“理”,这个“理”指的是“比值”。日本在明治维新以前,欧美数学典籍的译本多半采用中国文言文的译本。日本学者将中国文言文中的“理”直接翻译成了理,而不是文言文所解释的“比值”。后来,日本学者直接用错误的理解翻译出了“有理数”和“无理数”。(文言文中理字没有比值的意思)
当有理数从日本传回中国时又延续错误。清末中国派留学生到日本,将此名词传回中国,以至现在中日两国都用“有理数”和“无理数”的说法。
可见,由于当年日本学者对中国文言文的理解不到位,才出现了今天的误译。