直角三角形三边关系是怎样的?
01、直角三角形三边关系:任意两边长度之和大于第三边,任意两边之差小于第三边。如果直角三角形两直角边分别为A和B,斜边为C,那么 A² B²=C²。
三角形三边关系是三角形三条边关系的定则,具体内容是在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。设三角形三边为a,b,c则:a b>c,a>c-b;b c>a,b>a-c;a c>b,c>b-a。任意△ABC,求证AB AC>BC。
证明:在BA的延长线上取AD=AC,则∠D=∠ACD(等边对等角)
∵∠BCD>∠ACD
∴∠BCD>∠D
∴BD>BC(大角对大边)
∵BD=AB AD=AB AC
∴AB AC>BC
直角三角形三边关系:
1、三角形两边之和大于第三边,两边之差小于第三边。(三角形两边之和大于第三边中的两边是指两条较小的边,两边之差小于第三边的两边是指两条较大的边。)
2、在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
勾股定理逆定理:如果三角形的三边长a,b,c满足a² b²=c²,那么这个三角形是直角三角形。
3、直角三角形斜边的中线等于斜边的一半。
4、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
5、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
6、等底同高的三角形面积相等。
7、底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
8、三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
9、等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。