范文

位置:首页 > 范文 > 教学计划

高二数学教师的教学计划

发布时间:2022-09-06 16:58:12

  一、教材分析

  1.算法章节:

  新课标中算法内容的引入,是适应信息技术高速发展的需要,算法体现了通用化、机械化、程序化等特点,在算法教学中的几点建议如下:

  (1)同时走好算法表示的三条路,即自然语言、程序框图、算法语句.在教学中,可以结合具体的算法实例,分析用自然语言表示算法的步骤,绘制相应算法的程序框图,并编写相应框图的算法程序.注意三条途径的目的都是体会其中的算法思想.

  (2)剖析清楚教材中的几例典型算法实例.例如解一元二次方程、二元一次方程组,质数的判定,按大小顺序输出三个数,1~100的累加,二分法求方程近似解,分段函数的求值等.

  (3)学习程序框图时,先结合一个流程图的实例,认知基本的程序框及功能,并分析出其中的逻辑结构.各种逻辑结构(顺序结构、条件结构、当循环结构、直到循环结构)的学习,都应当配合一个具体的例子来逐步分析,特别是循环结构,要一次次循环进行分析,让学生彻底理解框图的功能,提高逻辑思维能力.

  (4)可以根据实际情况调整教材中框图的实例.我们在教学中,感觉必修③第5页的框图引例的理解有一定难度,从而结合前面所练的自然语言表示的算法,用框图表示出来,让学生认知框图符号与逻辑结构.参考的算法实例如下:

  例1任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积;(教材P4)

  例2任意给定一个正整数n,试设计一个算法判断n是否为偶数;(教材P3例1改编)

  例3设计一个计算1 2 … 100的值的算法.(教材P9例5提前)

  (5)大胆试验,程序框图与算法语句同步教学.我们在分析顺序结构的框图时,讲授算法语句中的输入语句INPUT、输出语句PRINT和赋值语句.在分析条件结构框图时,讲授条件语句,即IF-THEN语句.在分析两种循环结构的框图时,讲授两类循环语句,即WHILE语句与UNTIL语句.每种类型的语句,都配以相应的程序框图进行流程分析,强调语句的格式及功能,结合几个典型实例进行算法分析、框图设计、程序编写等,三者的配合训练,才能更好地加强、巩固算法知识.

  (6)典型算法案例(辗转相除法与更相减损术、秦久韶算法、进位制)的学习,都必须奠基在其历史背景之上,讲清楚具体的解题步骤,剖析如此解题的原理,在熟练解题的基础上,再结合框图或语句,从算法思维的角度进行分析.

  2.统计章节:

  统计是研究如何收集、整理、分析数据的科学.必修③第二章的学习过程,实质就是学习如何逐步解决一个实际问题,我们先认识随机抽样的重要性,并掌握随机抽样的三种类型,通过科学的抽样得到样本,进一步研究如何用样本的频率分布去估计总体分布,又如何用样本的数字特征估计总体的数字特征.在样本数据的分析过程中,发现一些变量之间有一定的规律,例如两个变量的线性相关等.

  统计部分的教学,我们需遵循以上认知规律,密切联系现实生活来渗透统计方法与思想,强化抽样方法的步骤及区别、频率分布直方图的五步曲(极差→组距→分组→列表→画图)、数字特征(众数、中位数、平均数、标准差、方差)的计算、线性回归中的数形结合思想及计算器的配合使用.教学中重点训练的一些题型是:关于分层抽样的数字客观题、频率分布直方图的研究、标准差与方差的实际应用、线性回归模型的求解等.

  3.概率章节:

  概率是研究随机现象规律性的科学.对比大纲教材,课标教材在概率部分有较大的区别.在必修③概率一章中,利用随机事件的频率给出概率的定义,并学习概率的基本性质及两个概率模型(古典概型、几何概型).我们在教学中需注意如下几个方面:

  (1)坚决不补充排列与组合.必修③概率的计算,不是建立在排列组合的计数基础上,而是通过逐一列举来进行计数,或者由简单的分类加法计数方法及分步乘法计数方法来进行计数,两种计数方法也不必上升到计数原理的学习,结合简单的实例渗透计数方法的学习即可.补充排列与组合,违背了课标的精神,淡化了概率思想,也加重了学生的学习负担.排列与组合只是选修2-3的内容,以后选修文科的学生根本不学,概率的学习只是要求达到必修③概率一章的水平.

  (2)强调概率意义的理解.教材中呈现了广泛的实例,例如购彩票中奖的可能性、游戏的公平性、决策中的概率思想、天气预报的概率解释、生物试验中的发现、遗传机理中的统计规律等,通过这些实例阐述了概率的意义,这部分内容往往却被教师轻描淡写的一带而过.我们在教学中,应当认真剖析这些实例,让概率的意义在学生脑海中根深蒂固,从而激发学生进一步学习概率知识的欲望.

  (3)在古典概型的基础上,类比学习几何概型.可以从模型特征的共同点与不同点,计算公式及求解步骤等方面进行比较.特别注意古典概型的计算是以简单计数为基础,几何概型的计算则需运用数形结合思想.

  本章教学中,重点训练的一些题型是:由概率性质进行概率计算、古典概型的概率计算、几何概型的概率计算.常常融合的实际背景是抛掷硬币、摸球、质检、会面等,渗透的数学思想则以分类讨论思想、数形结合思想为主.

  二、任教班级学情分析

  12班虽是理科重点班,但数学成绩仍很差,分班数学成绩仅86分(满分150)

  全班48人,男生31人,女生17.

  三、教学工作目标

  尽力提高学生的数学学习能力

  四、教学进度安排

  本期教学任务:理科:必修三、选修2—1;

  高二数学教师教学计划篇二

  一、指导思想:

  本学期,我们高二数学组全体成员将认真贯彻我校的教育教学工作要点,在学校教导处工作计划的指导下,以更新观念为前提,以育人为归宿,以提高课堂教学效率为重点。转变教学理念,改进教学方法,优化教研模式,积极探索在新课程改革背景下的小学数学教研工作新体系。提高数学教学质量,努力让本组数学教师成为有思想、有追求、有能力、有经验、有智慧、有作为的新型教师,使备课组的工作更上一个台阶。

  二、目标任务:

  1、努力提高数学教学质量,使各班数学成绩达到学校规定的有关标准。

  2、在数学学科教研教改中注重素质教育,让本组教师成为一支思想素质、业务素质过硬的数学教师队伍。

  3、狠抓生本教育,加强数学课堂改革力度,积极开展各项教研活动,提高现代教学水平,切实优化数学课堂教学,充分发挥多媒体教学手段,促进教学质量的提高。

  4、积极开展业务学习活动,在全组形成教研之风、互学之风、创新教育之风,共同提高教育教学水平。

  5、加强集体备课。本学期,我们组将按照学校的教学计划如实开展教研活动,认真开展合作研练活动,按照“个人研究、同伴交流、达成共识、主备撰写、实践改进、反思提高”的步骤进行集体备课,听课后认真评课,及时反馈,如教学内容安排否恰当。难点是否突破,教法是否得当,教学手段的使用,教学思想、方法的渗透。是否符合素质教育的要求,老师的教学基本功等方面进行中肯,全面的评论、探讨。争取使我们的教学水平更上一个新的台阶。

  三、具体措施:

  1、把握教材关:

  认真学习新课程标准,钻研教材,把握各单元、各节的教学要求和重难点,熟悉教材的特点和编者的意图,订好所教学科的教学计划。计划要体现每单元重难点以及采取的措施,研究解决难点的方法。从而改进自己的教学方法和练习策略。对教材中存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的教育教学心得。

  2、规范日常工作:

  严格规范数学教学常规。每位教师要认真制定教学计划,认真备课、上课、布置和批改作业、辅导学生、组织数学学科的质量调查。学生作业的规范性要求,包括学生书写作业的规范和教师批阅作业的规范。

  3、教师角色的变化:

  全组成员要积极实践生本教育,真正实现教师是学习的组织者、引导者,是学生的合作伙伴,不再是在“讲”的基础上“扶”着学生、“牵”着学生去掌握知识,而是要将知识“放”给学生,放心、放手地让学生自主学习。

  总之,我们愿与新课程同行,在探索中前进,在失败中成熟,把新课改引向深入。因为我们坚信我们的新课改最终可以使学生学会:用自己的眼睛去观察,用自己的头脑去思考,用自己的语言去表达,用自己的心灵去感悟。

  高二数学教师教学计划篇三

  一、指导思想

  主动而不是被动的进行高中新课程标准改革,认真解读新课程标准的理念;研究高中新课程标准的实验与高考衔接的问题;把学生的接受性、被动学习转变成主动性、研究性学习;使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  4.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  5.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二.工作目标

  备课组长在教研组长的领导下,负责年级备课和教学研究工作,努力提高本年级学科的教学质量。

  1.全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的同仁关系,力争使我们高一数学组成为一个充满活力的优秀集体。

  2.不拘形式不拘时间地点的加强交流,互相之间取长补短,与时俱进,教学相长。

  3.在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。

  4.抓好本年级活动课和研究性学习课的教学,有针对性培养学有余力,学有特长的学生,并做好后进生的转化工作,真正做到大面积提高教育质量。

  三.主要措施

  1.以老师的精心备课与充满激情的教学,换取学生学习高效率。

  2.将学校和教研组安排的有关工作落到实处。

  3.落实培辅工作,为高三铺路!教育要从娃娃抓起,那么对难于上青天的教学我们应当从今天抓起。

  四.活动设想

  1.按时完成学校(教导处,教研组)相关工作。

  2.共同研究,共同探讨,备课组为新教材每章节配套单元测试卷两套。

  3.每周集体备课一次,每次有中心发言人,组织进行教学研讨以便分章节搞好集体备课。

  4.互相听课,以人之长,补己之短,完善自我。

  5.认真组织好培优辅差工作。

  6.做好学科段考、模块的复习、出题、考试、评卷、成绩统计和质量分析评价工作.

  7.积极组织全组成员探索教材特点、积极思考教法分析、认真分析学情以便根据不同的情况实施有效的教学策略.

  五.教学内容与要求

  1.导数及其应用(约24课时)

  (1)导数概念及其几何意义

  ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。

  ②通过函数图像直观地理解导数的几何意义。

  (2)导数的运算

  ①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x的导数。

  ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax b))的导数。

  ③会使用导数公式表。

  (3)导数在研究函数中的应用

  ①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

  ②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

  (4)生活中的优化问题举例。

  例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1案例中的例5)

  (5)定积分与微积分基本定理

  ①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。

  ②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)

  (6)数学文化

  收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。(参见第91页)

  2.推理与证明(约8课时)

  (1)合情推理与演绎推理

  ①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见选修2-2中的例2、例3)。

  ②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

  ③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

  (2)直接证明与间接证明

  ①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

  ②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

  (3)数学归纳法

  了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

  (4)数学文化

  ①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。

  ②介绍计算机在自动推理领域和数学证明中的作用。

范文相关阅读

范文热点