求高极限数的方法总结
发布时间:2022-12-07 17:15:29
假如高等数极限是棵树木得话,那么极限就是他的根,高数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎。可见这有多重要,那么小编就带大家一起获取高数的方法吧。
求高数极限的方法总结1、利用定义求极限。
2、利用柯西准则来求。
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于
任意的自然数m有|xn-xm|<ε.
3、利用极限的运算性质及已知的极限来求。
如:lim(x x^0.5)^0.5/(x 1)^0.5
=lim(x^0.5)(1 1/x^0.5)^0.5/(x^0.5)(1 1/x)^0.5
=1.
4、利用不等式即:夹挤定理。
5、利用变量替换求极限。
例如lim (x^1/m-1)/(x^1/n-1)
可令x=y^mn
得:=n/m.
6、利用两个重要极限来求极限。
(1)lim sinx/x=1
x->0
(2)lim (1 1/n)^n=e
n->∞
7、利用单调有界必有极限来求。
8、利用函数连续得性质求极限。
9、用洛必达法则求,这是用得最多的。
10、用泰勒公式来求,这用得也很经常。